19.6. Advanced Topics

19.6.1. Tuning

There are a number of tunables that can be adjusted to make ZFS perform best for different workloads.

  • vfs.zfs.arc_max - Maximum size of the ARC. The default is all RAM but 1 GB, or 5/8 of all RAM, whichever is more. However, a lower value should be used if the system will be running any other daemons or processes that may require memory. This value can be adjusted at runtime with sysctl(8) and can be set in /boot/loader.conf or /etc/sysctl.conf.

  • vfs.zfs.arc_meta_limit - Limit the portion of the ARC that can be used to store metadata. The default is one fourth of vfs.zfs.arc_max. Increasing this value will improve performance if the workload involves operations on a large number of files and directories, or frequent metadata operations, at the cost of less file data fitting in the ARC. This value can be adjusted at runtime with sysctl(8) and can be set in /boot/loader.conf or /etc/sysctl.conf.

  • vfs.zfs.arc_min - Minimum size of the ARC. The default is one half of vfs.zfs.arc_meta_limit. Adjust this value to prevent other applications from pressuring out the entire ARC. This value can be adjusted at runtime with sysctl(8) and can be set in /boot/loader.conf or /etc/sysctl.conf.

  • vfs.zfs.vdev.cache.size - A preallocated amount of memory reserved as a cache for each device in the pool. The total amount of memory used will be this value multiplied by the number of devices. This value can only be adjusted at boot time, and is set in /boot/loader.conf.

  • vfs.zfs.min_auto_ashift - Minimum ashift (sector size) that will be used automatically at pool creation time. The value is a power of two. The default value of 9 represents 2^9 = 512, a sector size of 512 bytes. To avoid write amplification and get the best performance, set this value to the largest sector size used by a device in the pool.

    Many drives have 4 KB sectors. Using the default ashift of 9 with these drives results in write amplification on these devices. Data that could be contained in a single 4 KB write must instead be written in eight 512-byte writes. ZFS tries to read the native sector size from all devices when creating a pool, but many drives with 4 KB sectors report that their sectors are 512 bytes for compatibility. Setting vfs.zfs.min_auto_ashift to 12 (2^12 = 4096) before creating a pool forces ZFS to use 4 KB blocks for best performance on these drives.

    Forcing 4 KB blocks is also useful on pools where disk upgrades are planned. Future disks are likely to use 4 KB sectors, and ashift values cannot be changed after a pool is created.

    In some specific cases, the smaller 512-byte block size might be preferable. When used with 512-byte disks for databases, or as storage for virtual machines, less data is transferred during small random reads. This can provide better performance, especially when using a smaller ZFS record size.

  • vfs.zfs.prefetch_disable - Disable prefetch. A value of 0 is enabled and 1 is disabled. The default is 0, unless the system has less than 4 GB of RAM. Prefetch works by reading larger blocks than were requested into the ARC in hopes that the data will be needed soon. If the workload has a large number of random reads, disabling prefetch may actually improve performance by reducing unnecessary reads. This value can be adjusted at any time with sysctl(8).

  • vfs.zfs.vdev.trim_on_init - Control whether new devices added to the pool have the TRIM command run on them. This ensures the best performance and longevity for SSDs, but takes extra time. If the device has already been secure erased, disabling this setting will make the addition of the new device faster. This value can be adjusted at any time with sysctl(8).

  • vfs.zfs.vdev.max_pending - Limit the number of pending I/O requests per device. A higher value will keep the device command queue full and may give higher throughput. A lower value will reduce latency. This value can be adjusted at any time with sysctl(8).

  • vfs.zfs.top_maxinflight - Maxmimum number of outstanding I/Os per top-level vdev. Limits the depth of the command queue to prevent high latency. The limit is per top-level vdev, meaning the limit applies to each mirror, RAID-Z, or other vdev independently. This value can be adjusted at any time with sysctl(8).

  • vfs.zfs.l2arc_write_max - Limit the amount of data written to the L2ARC per second. This tunable is designed to extend the longevity of SSDs by limiting the amount of data written to the device. This value can be adjusted at any time with sysctl(8).

  • vfs.zfs.l2arc_write_boost - The value of this tunable is added to vfs.zfs.l2arc_write_max and increases the write speed to the SSD until the first block is evicted from the L2ARC. This Turbo Warmup Phase is designed to reduce the performance loss from an empty L2ARC after a reboot. This value can be adjusted at any time with sysctl(8).

  • vfs.zfs.scrub_delay - Number of ticks to delay between each I/O during a scrub. To ensure that a scrub does not interfere with the normal operation of the pool, if any other I/O is happening the scrub will delay between each command. This value controls the limit on the total IOPS (I/Os Per Second) generated by the scrub. The granularity of the setting is determined by the value of kern.hz which defaults to 1000 ticks per second. This setting may be changed, resulting in a different effective IOPS limit. The default value is 4, resulting in a limit of: 1000 ticks/sec / 4 = 250 IOPS. Using a value of 20 would give a limit of: 1000 ticks/sec / 20 = 50 IOPS. The speed of scrub is only limited when there has been recent activity on the pool, as determined by vfs.zfs.scan_idle. This value can be adjusted at any time with sysctl(8).

  • vfs.zfs.resilver_delay - Number of milliseconds of delay inserted between each I/O during a resilver. To ensure that a resilver does not interfere with the normal operation of the pool, if any other I/O is happening the resilver will delay between each command. This value controls the limit of total IOPS (I/Os Per Second) generated by the resilver. The granularity of the setting is determined by the value of kern.hz which defaults to 1000 ticks per second. This setting may be changed, resulting in a different effective IOPS limit. The default value is 2, resulting in a limit of: 1000 ticks/sec / 2 = 500 IOPS. Returning the pool to an Online state may be more important if another device failing could Fault the pool, causing data loss. A value of 0 will give the resilver operation the same priority as other operations, speeding the healing process. The speed of resilver is only limited when there has been other recent activity on the pool, as determined by vfs.zfs.scan_idle. This value can be adjusted at any time with sysctl(8).

  • vfs.zfs.scan_idle - Number of milliseconds since the last operation before the pool is considered idle. When the pool is idle the rate limiting for scrub and resilver are disabled. This value can be adjusted at any time with sysctl(8).

  • vfs.zfs.txg.timeout - Maximum number of seconds between transaction groups. The current transaction group will be written to the pool and a fresh transaction group started if this amount of time has elapsed since the previous transaction group. A transaction group my be triggered earlier if enough data is written. The default value is 5 seconds. A larger value may improve read performance by delaying asynchronous writes, but this may cause uneven performance when the transaction group is written. This value can be adjusted at any time with sysctl(8).

19.6.2. ZFS on i386

Some of the features provided by ZFS are memory intensive, and may require tuning for maximum efficiency on systems with limited RAM.

19.6.2.1. Memory

As a bare minimum, the total system memory should be at least one gigabyte. The amount of recommended RAM depends upon the size of the pool and which ZFS features are used. A general rule of thumb is 1 GB of RAM for every 1 TB of storage. If the deduplication feature is used, a general rule of thumb is 5 GB of RAM per TB of storage to be deduplicated. While some users successfully use ZFS with less RAM, systems under heavy load may panic due to memory exhaustion. Further tuning may be required for systems with less than the recommended RAM requirements.

19.6.2.2. Kernel Configuration

Due to the address space limitations of the i386™ platform, ZFS users on the i386™ architecture must add this option to a custom kernel configuration file, rebuild the kernel, and reboot:

options        KVA_PAGES=512

This expands the kernel address space, allowing the vm.kvm_size tunable to be pushed beyond the currently imposed limit of 1 GB, or the limit of 2 GB for PAE. To find the most suitable value for this option, divide the desired address space in megabytes by four. In this example, it is 512 for 2 GB.

19.6.2.3. Loader Tunables

The kmem address space can be increased on all FreeBSD architectures. On a test system with 1 GB of physical memory, success was achieved with these options added to /boot/loader.conf, and the system restarted:

vm.kmem_size="330M"
vm.kmem_size_max="330M"
vfs.zfs.arc_max="40M"
vfs.zfs.vdev.cache.size="5M"

For a more detailed list of recommendations for ZFS-related tuning, see https://wiki.freebsd.org/ZFSTuningGuide.

All FreeBSD documents are available for download at https://download.freebsd.org/ftp/doc/

Questions that are not answered by the documentation may be sent to <freebsd-questions@FreeBSD.org>.
Send questions about this document to <freebsd-doc@FreeBSD.org>.